

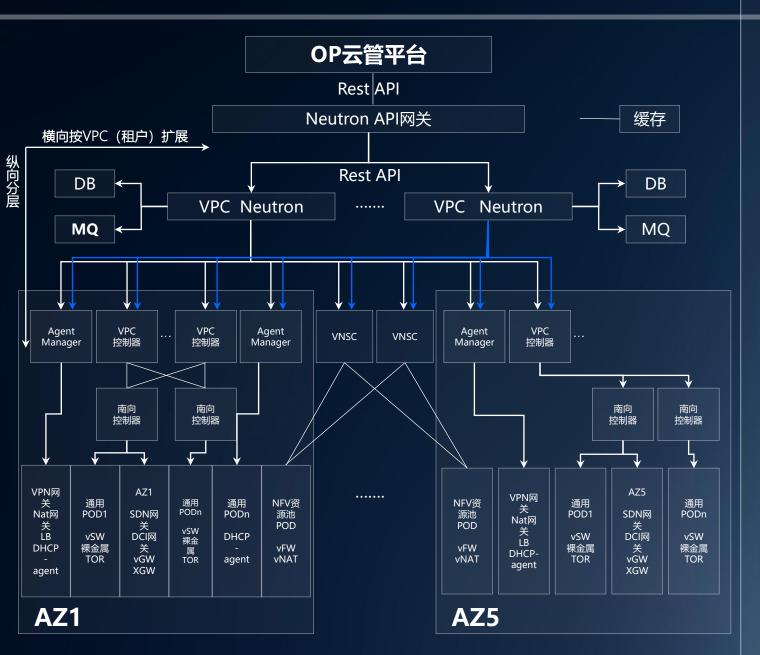
目录ITEN75

运营商公有云 大规模解决方案

运营商边缘云 解决方案

运营商私有云 解决方案

单Region逻辑拓扑


AZ内逻辑拓扑

控制面架构

整体结构

此方案纵向上为三层架构: Neutron API网关集群 + Region级VPC Neutron集群+ Agent Manager群集群/VNSC

集群/SDN控制器集群;横向上Region内多Neutron通过租户业务来划分和横向扩展。

支持指标

100k vpc、10k计算节点

Neutron API网关

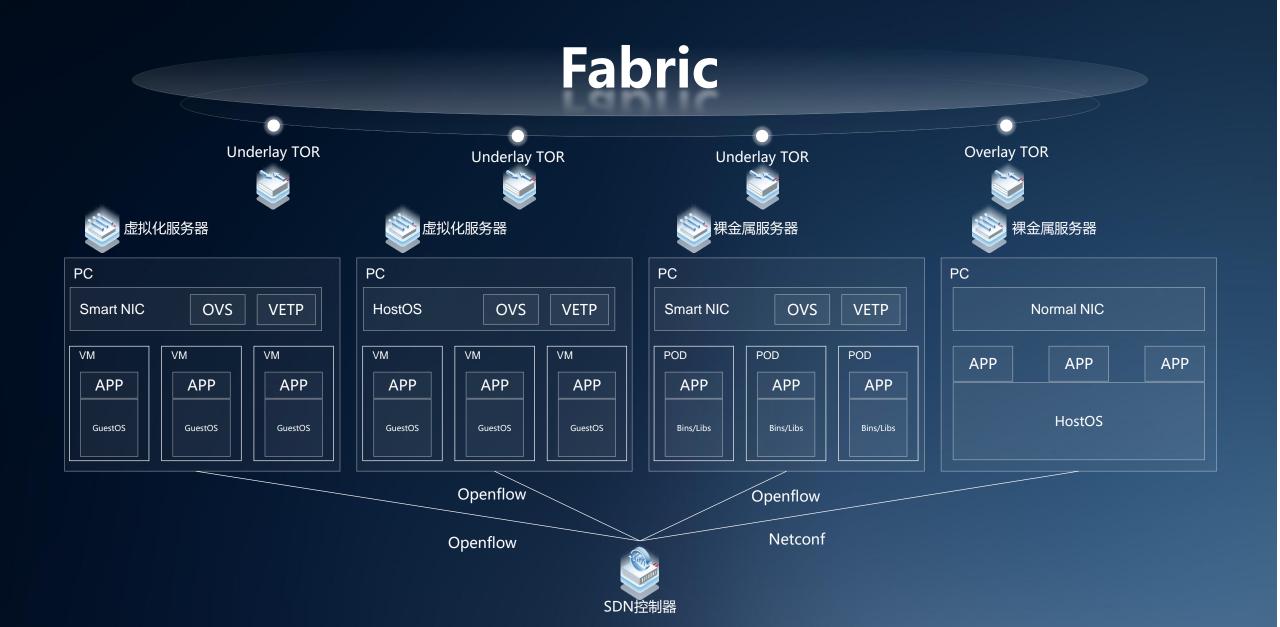
主要做轻度的逻辑判断和API路由分发,北向通过标准的Neutron Rest API被OP云管平台调用,使用数据缓存,保存租户id — > VPC Neutron的映射关系,并根据映射关系将API请求分发到对应的VPC Neutron

VPC Neutron

基于租户维护Region内相关的网络资源逻辑关系;每VPC Neutron使用单独的数据库和MQ,分库分队列减轻数据库和MQ的并发和性能压力;Region内同租户的网络资源只会存在于一个 VPC Neutron集群上。根据部署规模,可按照租户VPC业务横向扩展

Agent Manager

VPC Neutron与多AZ内所有Agent Manager为"多对多" full mesh对接关系;为提升Agent Manager处理性能,每Agent Manager集群单独使用一套MQ,用于对上与所有VPC Neutron集群、对下与自己所管控的域DHCP Agent/VPN网关/NAT网关/LB之间进行异步通信


VNSC

一套VNSC集群可管控2000台NFV设备(NSG-1000v),在初期部署的时候每AZ业务容量为20%左右,为减小部署成本,采用一套VNSC集群可管控多个AZ内的NSG设备的控制方案,所以每套VPC Neutron集群需要和所有VNSC集群连接,即FullMesh连接方式

SDN控制器

SDN控制器集群内部分为北向VPC控制器与南向控制器,北向VPC控制器与南向控制器为"多对多" full mesh, VPC控制器基于租户管理不同租户业务,负责VPC业务编排; 南向控制器基于设备划分区域纳管,负责设备连接、配置管理下发发

设备角色对照表

设备角色	作用	部署模型
SDN网关	承载AZ内VPC的出口流量、东西向网卡访问underlay流量 裸金属TOR、Service Leaf、vGW、SDN控制器的BGP RR	一对,MLAG组网,旁挂在南北向汇聚交换机上
vGW网关	承载云专线接入,作为AZ连接云专网的边界	一对或多对,支持按需扩容,支持VSU或MLAG组网
Service Leaf (Overlay)	硬件LB、VPN网关接入 LB、VPN网关接入租户vxlan网络的网关	一对或多对,按需扩容,MLAG组网,旁挂SDN网关
SDN防火墙融合网关	裸金属、虚机业务的防火墙、内层NAT功能	一对或多对,按需扩容,主备组网,旁挂SDN网关
VPN网关	IPsec VPN、SSL VPN的网关服务及VPN防火墙功能	部署一对或多对,按需扩容,旁挂Service Leaf,主备组网
负载均衡	承载裸金属业务、虚机业务的负载均衡功能	部署一对或多对,支持按需扩容 支持旁挂Service Leaf或SDN网关,主备组网
裸金属TOR	裸金属接入交换机,裸金属接入租户vxlan网络的网关	部署多对,按需扩容,支持VSU或MLAG组网,用于承载裸金属接入
vSwitch	虚机接入虚拟交换机	部署在虚机计算节点上或者智能网卡SoC上
NAT网关	浮动IP 、浮动IP 绑定、NAT、	部署一对或多对,主备组网
QoS网关	QoS限速、共享带宽	部署一对或多对,主备组网
智能网卡	承载裸金属或者云主机接入到VPC网络	每计算资源按需部署智能网卡

多AZ解伏刀柔,构建 AZ级容灾、多AZ协同

03

SDN网元采用去堆叠组网,解决堆叠设备同时宕机、升级断流时间长等问题

02

支撑大规模公有云建设,支持SDN网元弹性扩容、 特SDN网元弹性扩容、 Underlay与Overay解耦、 大带宽、大规模、低成本

04

虚拟交换机热升级,升级平均断流时间小于 500ms

ESTENTS

运营商公有云 大规模解决方案

运营商边缘云 解决方案

运营商私有云 解决方案

内容/应用/计算向边缘迁移驱动边缘云发展

应用本地化 "低成本"

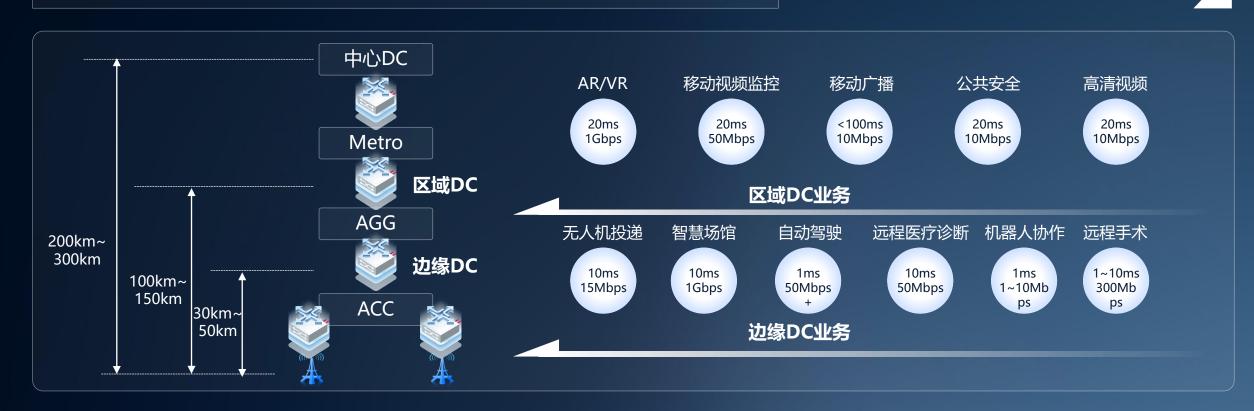
园区、企业、场馆等自己的 应用在本地闭环

智能工厂、智能办公、智慧城市

内容分布化 "大带宽"

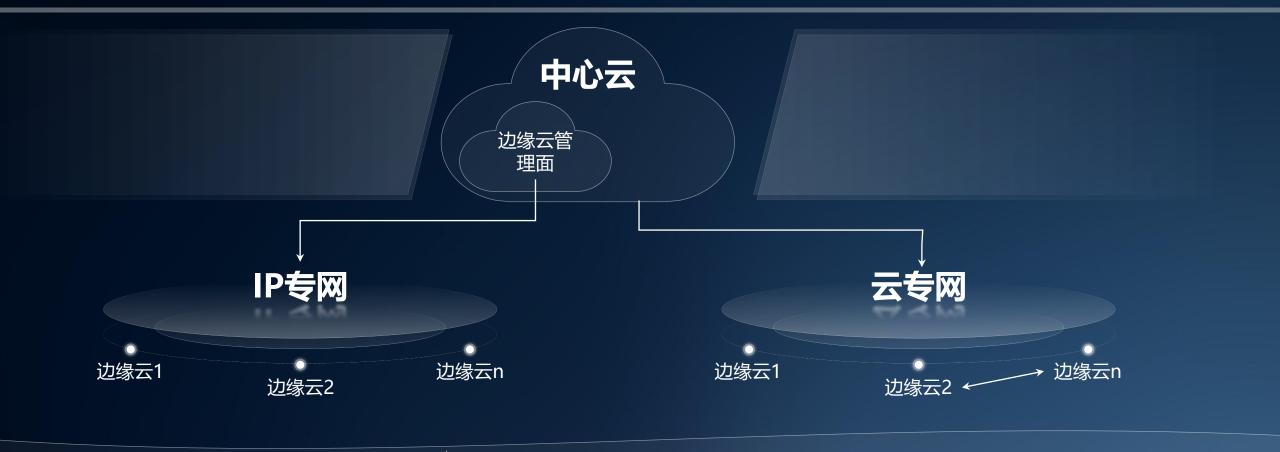
运营商高带宽内容从中心到区 域分布式部署

AR/VR、移动视频监控


计算边缘化 "超低时延"

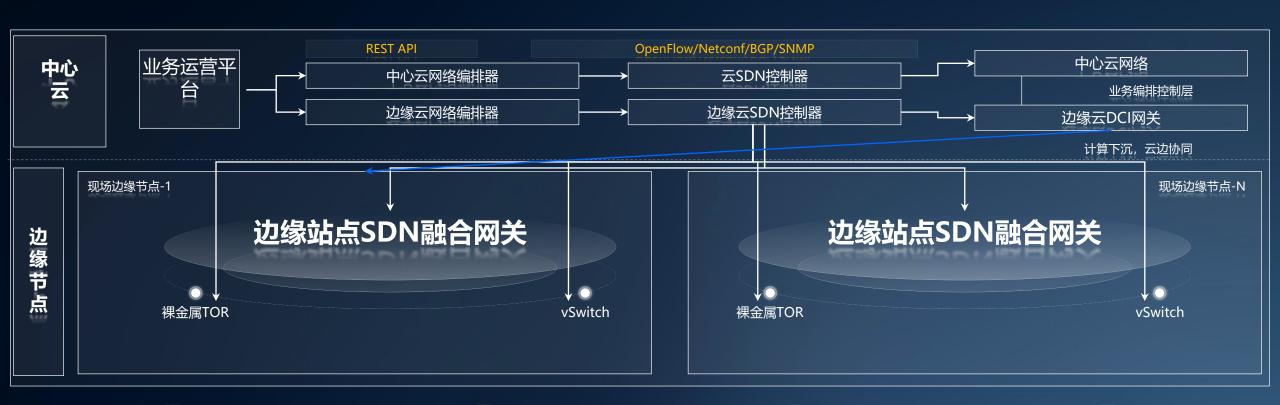
新型超低时延业务在边缘才能满足业 务诉求

自动驾驶、机器人协作、远程医疗诊断



集中式的云部署不能满足新业务需求,网络随业务流向边缘迁移 是产业趋势

边缘云总体设计架构



基于集中控制、分布转发的设计思路,所有的边边互通不需要流经中心节点

通过分布式VxLAN+EVPN+控制器多Fabric技术穿越云专网,实现边缘节点间的互通流量不需要到中心云绕行,满足边缘云业务低时延(10ms~20ms)的强诉求,极大降低了边边互通的时延

边缘云总体设计架构

SDN控制器、Neutron编排器、云平台都部署在中心云,在边缘侧只有网络设备,相当于"控制面"部署在中心侧,"转发面"部署在边缘侧

中心侧通过IP专网对多个边缘节点进行 统一运维管理、业务开通下发

SDN控制器通过分域Fabric对每个边缘节点进行管理、Neutron通过多vAZ 纳管对多个边缘节点进行管理

边缘节点不部署管理模块,大幅提高 边缘节点的建设周期以及提高运维效 率,同时降低边缘节点的建设成本

一套SDN控制器拉远管理多个分域Fabric

中心节点

▶ 边缘云 SDN控制器

▶ 边缘云DCI网关

OpenFlow/Netconf/BGP/SNMP

边缘节点

分域Fabric-1

^{现场边缘节点1}

分域Fabric-2 ^{现场边缘节点2} 分域Fabric-3 ^{现场边缘节点3}

分域Fabric-n
^{现场边缘节点n}

业务编排控制层

每个物理隔离的边缘站点为 一个分域Fabric,每个分域 Fabric可以承载多个VPC 边缘云SDN控制器根据边缘 站点的新建,按需创建分域 Fabric,在边缘站点内的 Overlay网元归属所属分域 Fabric

在省节点部署边缘云DCI网关, 作为所有边缘站点内Overlay 硬件网元的IBGP RR

一套边缘云SDN控制器管理 多个远端分域Fabric 边缘云SDN控制器与边缘云 DCI网关建立IBGP EVPN邻 居,实现裸金属与虚机间的 互通

分布式VxLAN+EVPN+控制器多 Fabric技术穿越云专网

通过分布式VxLAN+EVPN+控制器多Fabric技术穿越云专网,实现边缘节点间的互通流量不需要到中心云绕行,满足用户15ms内的业务超低时延、就近接入需求,可按需实现用户数据不出所在区域,保障数据安全

云边协同

通过数据库共享技术,实现中心云与边缘云业务协同,为最终用户(租户)提供计算下层(将消耗大量计算资源的业务处理能力下沉至靠近现场的边缘侧)、中心云统一业务管理和编排的云边协同服务,使得最终用户(租户)可以更加顺畅、平滑的开展边缘服务。

云边同构

基于移动云中心云SDN网络底座打造云边架构融合, 为最终用户(租户)提供与中心云用户体验一致的边 缘云服务,避免对租户学习成本影响接受度

AZ拉远

通过AZ拉远技术,一套管理模块拉远管理多个边缘节点,简化流程,减少控制器部署的数量,避免人员到各个区县进行复杂的部署和运维排障,每边缘节点节省2周的软集时间,实现快速部署、易运维,同时降成本(每边缘节点不需要部署6台管理服务器)

方案价值

云边协同

通过数据库共享技术,实现中心云与边缘云业务协同,为最终用户(租户)提供

计算下层服务

(将消耗大量计算资源的业务处理能力下沉至靠近现场的边缘侧)

中心云 统一业务 管理服务 编排的 云边协同 服务

使得最终用户(租户)可以更加顺畅、平滑的开展 边缘服务

云边同构

避免对租户学习成本影响接受度

基于移动云中心云SDN网络底座打造云边架构融合,为最终用户(租户) 提供与中心云用户体验一致的边缘云服务,

D

分布式VxLAN+EVPN+控制器 多Fabric技术穿越云专网

通过分布式VxLAN+EVPN+控制器多Fabric 技术穿越云专网,实现边缘节点间的互通流 量不需要到中心云绕行,**满足用户15ms内的**

业务超低时延

就近接入需求

可按需实现用户数据不出所在区域,保障数 据安全

AZ拉远

通过AZ拉远技术,一套管理模块拉远管理多个边缘节点,简化流程,减少控制器部署的数量,避免人员到各个区县进行复杂的部署和运维排障,每边缘节点节省2周的软集时间,

降成本

快速部署

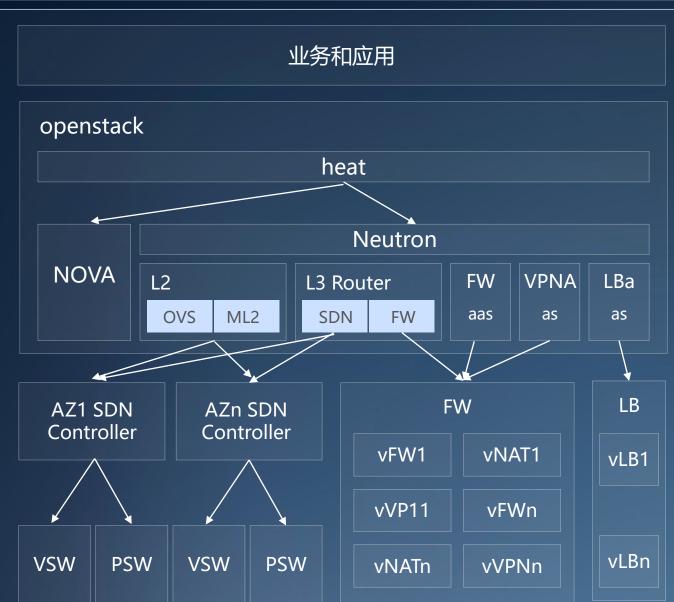
易运维

(每边缘节点不需要部署6台管理服务器)

目录/TEN/TS

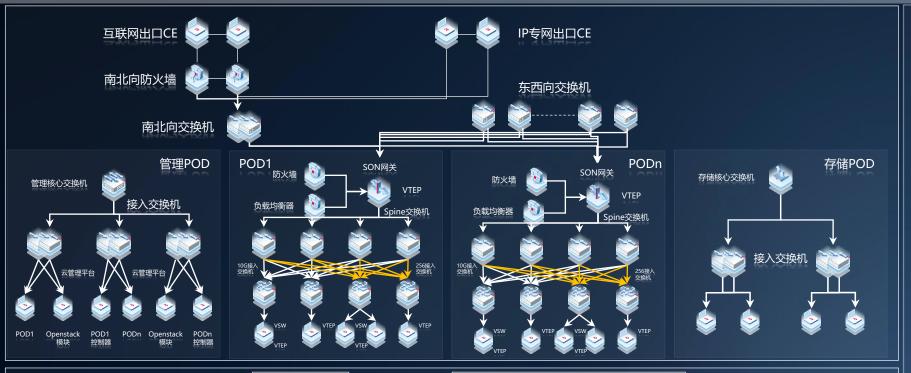
运营商公有云 大规模解决方案

运营商边缘云 解决方案



运营商私有云 解决方案

运营商私有云整体架构



运营商私有云解决方案

Nova Ironic Openstack 业务编排层 Neutron AOI Neutron ML2 Driver LBaas Plugin L3 Agent Fwaas Plugin 网络控制层 **RESTful API** SDN Controller NETCONF/RESTful API NETCONF/SNMP/Openflow/EVPN 基础设施层 Switch(Border Leaf) Switch(Leaf) Fw(vFW) LB(vLB) OVSDB/Openflow vSwitch vSwitch BM BM VM VM VM VM VM Hypervisor Hypervisor

支撑场景

实现运营商私有业务上云

组网描述

混合Overlay组网,支撑虚机、裸金属同时接入以及互通

去堆叠,SDN网关、硬件VTEP采用M-LAG组网技术去堆叠

高可靠, SDN防火墙、SDN负载均衡, 采用主备模式部署

POD间采用分布式VXLAN+BGP EVPN模型部署,采用VXLAN L2 Mapping和VXLAN L3 VNI的方式实现POD间DCI互通

防火墙、负载均衡器、SDN网络由OpenStack云平台进行管理

